Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Name of the course in Polish	Metodyka analizy elektromechanicznych przetworników energii
Name of the course in English	Methodology for analysis of electromechanical energy converters
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Elective
Field of education	Engineering and Technology
Discipline of education	Automatic Control, Electronics and Electrical Engineering
Person responsible for the course Contact	Prof. Tadeusz J. Sobczyk, <i>doctor habilitatus</i> in Engineering tadeusz.sobczyk@pk.edu.pl

Information on the course

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer laboratory	Project class	Seminar
2	G	30	0	0	0	0	0
			••.				

*G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description		
Objective 1	Introduction to the problems of advanced modelling and analysis of electromechanical energy converters		
Objective 2	Presentation of formulation and analysis of advanced mathematical models of induction machines		

Learning outcomes

Code	Code Description of the learning outcome adjusted to the specific characteristics of the discipline		Methods of verification
	OUTCOMES RELATED TO KNO	WLEDGE	
EUW1	The doctoral student knows and understands the theoretical foundations for the formulation of mathematical models of electromechanical energy converters.	E_W01 E_W02	Attendance at lectures, written assessment
EUW2	The doctoral student knows and understands advanced methods for solving mathematical models of electromechanical energy converters.	E_W01 E_W02	Attendance at lectures, written assessment
OUTCOMES RELATED TO SKILLS			

EUU1	The doctoral student is able to take into account in mathematical models certain features of the magnetic circuit structure and of the windings of electromechanical energy converters.	E_U01	Attendance at lectures, written assessment
EUU2 The doctoral student is able to determine the properties of electromechanical energy converters based on the solutions of mathematical models.		E_U02	Attendance at lectures, written assessment
OUTCOMES RELATED TO SOCIAL COMPETENCES			CES
EUK1	The doctoral student is able to critically evaluate professional literature and appreciate mathematical methods for acquiring knowledge about the properties of technical objects.	E_K01 E_K03	Written assessment

Course outline

No.	Contents	Learning outcomes for the course	No. of hours
LECTURE			
W1	The general form of the Lagrange and Hamilton equations of electromechanical systems. The significance of energy functions and their forms. The characteristics of the equations of electromechanical energy converters and the reasons for the difficulty of solving them. The classification of operating states in relation to methods of analysis.	EUW1, EUW2, EUU1	8
W2	Applications of linear transformations to simplify equations of electromechanical systems. Conditions for reduction to linear equations with constant coefficients. Forms of general and particular solutions for such equations. Examples of analysis and solution of equations of simple energy converters.	EUW1, EUW2, EUU1, EUK1	4
W3	Analysis of electromagnetic phenomena in electromechanical rotary motion converters based on linear differential equations with periodic-variable coefficients. Basic properties of general and particular solutions of such equations. Introduction to the harmonic balance method. Applications to the steady- state analysis of AC electrical machines. Examples of qualitative analysis of Fourier spectra of simple electromechanical converters using the harmonic balance method.	EUW2, EUU1, EUU2, EUK1	5
W4	An example of the application of various analysis techniques to determine the properties of ring machines in transient and steady-state conditions when considering higher harmonic flows in windings.	EUU1, EUU2 EUK1	4
W5	Analysis of the properties of squirrel-cage induction machines using transformation matrix and the harmonic balance method.	EUU1, EUU2, EUK1	5
W6	Problems of solving harmonic balance equations for AC machines. The LU decomposition method and the discrete harmonic balance method.	EUW1, EUK1	4

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to the completion of an activity type	
SCHEDULED CONTACT HOURS WIT	H THE ACADEMIC TEACHER	
Hours allotted in the syllabus	30	
Consultations	2	
Course credit assignment	3	
HOURS WITHOUT THE PARTICIPATION OF THE ACADEMIC TEACHER		
Independent study of the course contents	20	
Preparation of a paper, report, project, presentation, discussion	0	
ECTS POINTS STATEMENT		
Total number of hours	55	
The ECTS points number	2	

Preliminary requirements

No.	Requirements
1	Knowledge of the fundamentals of algebra, mathematical analysis and differential equations.
2	Knowledge of the basic concepts, laws and methods of electrical circuit theory, electromagnetic circuit theory and electromechanical system theory.

Course credit assignment conditions / method of the final grade calculation

No.	Description		
	COURSE CREDIT ASSIGNMENT CONDITIONS		
1	1 80% attendance in class. Successful completion of the written assessment.		
	METHOD OF THE FINAL GRADE CALCULATION		
	The grade obtained on the written assessment.		

Additional information

None

The course reading list

1	Sobczyk T.J.; Metodyczne aspekty modelowania matematycznego maszyn indukcyjnych, WNT, Warszawa, 2002.
2	Sobczyk T.J., Węgiel T.; Elektromechaniczne przemiany energii, Wyd. PK, Kraków, 2014.
3	Rusek J.; Komputerowa analiza maszyny indukcyjnej z wykorzystaniem bilansu harmonicznych, Wyd. AGH, Kraków, 2000.
4	Articles from scientific journals and conferences as indicated by the teacher.