Cracow University of Technology Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Name of the course in Polish	Metaheurystyki równoległe w optymalizacji	
Name of the course in English	Parallel metaheuristics for optimisation problems	
Number of the ECTS points	1	
Language of instruction	Polish	
Category of the course	Elective	
Field of education	Engineering and Technology	
Discipline of education	Automatic Control, Electronics and Electrical Engineering	
Person responsible for the course Contact	Zbigniew Kokosiński, <i>doctor habilitatus</i> in Engineering, prof. of CUT zk@pk.edu.pl	

Information on the course

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer laboratory	Project class	Seminar
2, 3	G	9	0	0	0	6	0

*G – graded credit, NG – non-graded credit

Course objectives

Code	Code Objective description	
Objective 1	Introduction to discrete and continuous optimisation problems and their computational complexity	
Objective 2	Learning and applying selected modern metaheuristic methods in optimisation problems	

Learning outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome symbol in the CUT DS	Methods of verification	
	OUTCOMES RELATED TO KNO	WLEDGE		
EUW1	EUW1 The doctoral student knows and understands and their computational complexity		Attendance in class, written test	
EUW2	IW2 The doctoral student knows and understands selected metaheuristic methods		Attendance in class, written test	
OUTCOMES RELATED TO SKILLS				
EUU1	The doctoral student is able to select and implement a programmatic metaheuristic method for a given optimisation problem	E_U02 E_U08 E_U11	Project report	

	OUTCOMES RELATED TO SOCIAL COMPETENCES		
EUK1	The doctoral student is prepared to critically evaluate subject-related literature and to collaborate in a team execution of a project	E_K01 E_K02 E_K03 E_K07	Discussion, presentation of project results

Course outline				
No.	Contents	Learning outcomes for the course	No. of hours	
	LECTURE			
W1	Discrete and continuous optimisation problems and their computational complexity. Selected benchmarks.	EUW1	3	
W2	Selected metaheuristic methods derived from the local search method.	EUW2	3	
W3	Selected population-based metaheuristics.	EUW2	3	
PROJECT CLASS				
P1	Implementation of selected metaheuristics for a given optimisation problem.	EUW1, EUW2, EUU1, EUK1	6	

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to the completion of an activity type	
SCHEDULED CONTACT HOURS WIT	H THE ACADEMIC TEACHER	
Hours allotted in the syllabus	15	
Consultations	1	
Course credit assignment	2	
HOURS WITHOUT THE PARTICIPATION OF THE ACADEMIC TEACHER		
Independent study of the course contents	6	
Preparation of a paper, report, project, presentation, discussion	6	
ECTS POINTS STATEMENT		
Total number of hours	30	
The ECTS points number	1	

Preliminary requirements

No.	Requirements
1	Knowledge of a high-level programming language, general knowledge of algorithmics

Course credit assignment conditions / method of the final grade calculation

	No.	Description
		COURSE CREDIT ASSIGNMENT CONDITIONS
Attendance in class, passing a test on knowledge covered in the lecture, succe completion of an individual or team project		Attendance in class, passing a test on knowledge covered in the lecture, successful completion of an individual or team project

METHOD OF THE FINAL GRADE CALCULATION

The final grade is a weighted average of the grade on the test of knowledge covered in the lecture (weight 1) and the grade on the completion of the project (weight 3)

Additional information

None

Kubale M., Łagodne wprowadzenie do analizy algorytmów, Wyd. Politechniki 1 Gdańskiej, Gdańsk 2017 Sait S.M., Youssef H., Iterative computer algorithms with applications in engineering. 2 Solving combinatorial optimization problems, Los Alamitos, 1999, IEEE Computer Society Press 3 Michalewicz Z., Fogel D.B., How to solve it? Modern heuristics, Springer 1999 Ausiello G. et al., Complexity and approximation: Combinatorial optimization problems 4 and their approximability properties, Springer 1999 5 Alba E., Parallel metaheuristics. A new class of algorithms, Wiley, 2005 Kokosiński Z., Ochał Ł., Chrząszcz G., Parallel metaheuristics for robust graph coloring problem, [in:] Fidanova S. (ed.), Recent advances in computational optimization, 6 Studies in Computational Intelligence, Vol. 655, 285-302, Springer International Publishing, 2016

The course reading list