Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Mechanika ośrodków ciągłych w ujęciu komputerowym
Name of the course in English	Computational Continuum Mechanics
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Choosable
Field of education	Engineering and Technology
Discipline of education	Civil Engineering and Transport
Person responsible for the course Contact	CUT Prof Dorota Jasińska PhD Eng. dorota.jasinska@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical classes	Laboratory	Computer Lab	Project Class	Seminar
2, 3, 4, 5	G	15	0	0	15	0	0

*G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Consolidation and broadening of knowledge about the mechanics of continuous media
Objective 2	Expanding knowledge in the field of numerical modelling of materials
Objective 3	Acquiring the ability to model deformable bodies in the MES ABAQUS program

Learning Outcomes

	Description of the learning outcome adjusted to the	Learning	Methods of verification
	specific characteristics of the discipline	outcome	
Code		symbol in	
		the CUT	
		SD	
	OUTCOMES RELATED TO KNOWLEDGE		
	A PhD student knows and understands the methods		Involvement in the class
	of describing the tasks of the mechanics of a	E_W01,	activities, a project
EOWI	deformable medium in the field of kinematics,	E_W02	assessment
	dynamics and constitutive equations		
EUW2	A PhD student knows and understands the principles		Involvement in the class
	of computer modelling of continuous medium	E_W02,	activities, a project
	mechanics tasks, taking into account geometric and	E_W03	assessment
	physical nonlinearities		

	OUTCOMES RELATED TO SKILLS		
EUU1	A PhD student is able to formulate a problem in a form convenient for solving it with intelligent methods	E_U01, E_U02	Involvement in the class activities, a project assessment
EUU2	A PhD student is able to create and implement his own procedures in the Abaqus software	E_U01	Involvement in the class activities, a project assessment
EUU3	A PhD student is able to create a model of the nonlinear task of continuum mechanics in the Abaqus program and to critically analyse the obtained results	E_U01, E_U02	Involvement in the class activities, a project assessment
OUTCOMES RELATED TO SOCIAL COMPETENCES			
EUK1	A PhD student is ready to critically analyse the computer methods used in describing real phenomena	E_K01	Involvement in the class activities, a project assessment

Course outline

No.	Contents	Learning outcomes for the course	No. of
			hours
	LECTURE		
W1	Description of the kinematics and dynamics of a deformable medium in the material and spatial description of the motion of a continuous medium.	EUW1, EUW2, EUU1	2
W2	Constitutive equations. Hyperselastic, viscoelastic and plastic materials	EUW1, EUW2, EUU1, EUK1	6
W3	Modern materials: with microstructure (cellular), nanomaterials, nanocomposites	EUW1, EUW2, EUU1,EUU2, EUK1	5
W4	Principles of variation and energy methods in the mechanics of a continuous medium	EUW2, EUU2, EUK1, EUK2	2

	COMPUTER LAB		
LK1	Introduction to modelling in ABAQUS	EUU1, EUU3,EUK1	4
LK2	Modelling of geometric nonlinearities (large displacements and deformations, buckling)	EUU1, EUU3,EUK1	2
LK3	Material models available in the ABAQUS program - applications	EUU1, EUU3,EUK1	2
LK4	Contact modelling	EUU1, EUU3,EUK1	2
LK5	Dynamics tasks in Abaqus (implicit and explicit approach)	EUU1, EUU3,EUK1	2
LK6	Possibility of introducing your own procedures, including creating your own constitutive relationships (UMAT)	EUU1, EUU2,EUK1	3

The ECTS points statement

WORKING HOURS SETTLEMENT

Type of activity	Average number of hours (45 min.) dedicated to the completion of an activity	
	type	
SCHEDULED CONTACT HOURS WITH	I AN ACADEMIC TEACHER	
Hours allotted in the syllabus	30	
Consultations	4	
Examination / course credit assignment	2	
HOURS WITHOUT THE PARTICIPATION OF AN ACADEMIC TEACHER		
Independent study of the course contents	14	
Preparation of a project, a presentation, a discussion	10	
ECTS POINTS STATEMENT		
Total number of hours	60	
The ECTS points number	2	

Preliminary requirements

No.	Requirements
1	Not specified

Course credit assignment conditions / method of the final grade calculation

No.	Description
	COURSE CREDIT ASSIGNMENT CONDITIONS
1	75% attendance in class.
2	Completion of a computer project - tasks prepared in the ABAQUS program
	METHOD OF THE FINAL GRADE CALCULATION
	Assessment of a project, taking into account the presence

Additional information

Not specified

The course reading list

1	P. Szeptynski, "Szczegółówe omówienie podstawowych zagadnień teorii sprężystości", Wydawnictwo Politechniki Krakowskiej, 2020
2	J.Skrzypek "Plastycznośc i pełzanie". Teoria, zastosowania, zadania", PWN, Warszawa 1986.
3	R.M. Christensen, "Theory of Viscoelasticity. An introduction", Academic Press, 1982
4	J.N.Reddy, "Energy Principles and Variational Methods in Applied Mechanics", Willey & Sons, 2002
5	J.Mason, "Variational, incremental and energy methods in solid mechanics and shell theory", Elsevier, 1980
6	S. Burzyński, J. Chrościelewski "Wprowadzenie do modelowania MES w programe Abaqus" Wydawnictwo Politechniki Gdańskiej 2014