Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course				
Name of the course in Polish	Sieci Neuronowe i Algorytmy Genetyczne w Zagadnieniach Transportowych			
	w Zagaunieniach Hansportowych			
Name of the course in English	Neural Networks and Genetic Algorithms in Transport			
Number of the ECTS points	1			
Language of instruction	Polish			
Category of the course	Choosable			
Field of education	Engineering and Technology			
Discipline of education	Civil Engineering and Transport			
Person responsible for the course	CUT Prof Vitalii Naumov PhD Eng.			
Contact	vitalii.naumov@pk.edu.pl			

Information on the course

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical classes	Laboratory	Computer Lab	Project Class	Seminar
2, 3, 4, 5	G	7	0	0	8	0	0

*G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description			
Objective 1	Expanding knowledge in the field of optimization			
Objective 2	Acquiring the ability to use artificial intelligence tools			

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome symbol in the CUT SD	Methods of verification	
OUTCOMES RELATED TO KNOWLEDGE			1	
EUW1	A PhD student has knowledge of the application of	E_W02,	Final task	
LOWI	artificial intelligence methods in transport issues	E_W03		
	OUTCOMES RELATED TO SKILLS			
	A PhD student is able to formulate a problem in a		Laboratory exercise	
EUU1	form convenient for solving it with intelligent	E U02		
2001	methods	2_002		

A PhD student can use specialized packages andEUU2libraries to create software applications that solve transport issues		E_U02	Laboratory exercise	
	OUTCOMES RELATED TO SOCIAL COMPETENCES			
EUK1 A PhD student is ready to critically evaluate the results of simulation of transport processes		E_K01	Discussion during classes	

Course outline

		Learning outcomes for	No.
No.	Contents	the course	of
			hours
	LECTURE		
W1	Artificial neural networks: neuron models, network architecture, learning process, optimization of network architecture	EUW1, EUK1	2
W2	Genetic algorithms: mathematical foundations, chromosome coding methods, fitness function	EUW1, EUU1, EUU2	2
W3	Selection of the initial population, assessment and selection of chromosomes, reproduction with the use of genetic operators	EUW1, EUU1, EUU2, EUK1	3

	COMPUTER LAB		
К1	Linear and nonlinear networks, unidirectional and recursive networks	EUU1, EUU2, EUK1	2
К2	Examples of applications of neural networks in the field of transport and logistics	EUU1, EUU2, EUK1	2
К3	The use of genetic algorithms to solve optimization problems in transport and logistics	EUU1, EUU2, EUK1	2
К4	Hybrid systems: a combination of neural networks and genetic algorithms	EUU1, EUU2, EUK1	2

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.)	
	dedicated to the completion of an activity	
	type	
SCHEDULED CONTACT HOURS WITH	HAN ACADEMIC TEACHER	
Hours allotted in the syllabus	15	
Consultations	1	
Examination / course credit assignment	1	
HOURS WITHOUT THE PARTICIPATION OF AN ACADEMIC TEACHER		
Independent study of the course contents	6	
Preparation of a paper, report, project, presentation,	7	
discussion	,	
ECTS POINTS STATEMENT		
Total number of hours	30	
The ECTS points number	1	

Preliminary requirements

N	lo.	Requirements
	1	Knowledge of the basics of higher mathematics
	2	Knowledge of the basics of programming

Course credit assignment conditions / method of the final grade calculation

No.	Description		
	COURSE CREDIT ASSIGNMENT CONDITIONS		
1	1 80% attendance in class. Completion of a final task		
	METHOD OF THE FINAL GRADE CALCULATION		
	Assessment of the final task, taking into account the attendance		

Additional information

Not specified

The course reading list

1	Kosiński, R., Sztuczne Sieci Neuronowe, 2014, WNT
2	Rutkowska, D., Sieci Neuronowe, Algorytmy Genetyczne i Systemy Rozmyte, 1999, PWN
3	Tadeusiewicz, R., Odkrywanie Właściwości Sieci Neuronowych, 2007, PAU
4	Himanen, V., Neural Networks in Transport Applications, 1998, Ashgate Publishing
5	Goldberg, D.E., Algorytmy Genetyczne i Ich Zastosowania, 2003, WNT