Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Zorientowane Obiektowo Modele Systemów Transportowych i Logistycznych
Name of the course in English	Object-oriented models of transport and logistics systems
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Choosable
Field of education	Engineering and Technology
Discipline of education	Civil Engineering and Transport
Person responsible for the course Contact	CUT Prof Vitalii Naumov PhD Eng. vitalii.naumov@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical classes	Laboratory	Computer Lab	Project Class	Seminar
2, 3, 4, 5	G	15	0	0	15	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Expanding knowledge in the field of system modelling
Objective 2	Acquiring the ability to use modern computer simulation tools

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome symbol in the CUT	Methods of verification
		SD	
	OUTCOMES RELATED TO KNOW!	LEDGE	
	A PhD The doctoral student has knowledge of the		Final task
EUW1	application of the object-oriented paradigm in the	E_W02,	
EOMI	development of models of transport and logistics	E_W03	
	systems		
	OUTCOMES RELATED TO SKI	LLS	
EUU1	A PhD student is able to create an object-oriented model of a transport or logistics system	E_U02	A laboratory exercise

EUU2	A PhD student knows how to design classes and implement code for simulation models	E_U02	A laboratory exercise
	OUTCOMES RELATED TO SOCIAL COM	MPETENCES	
EUK1	A PhD student is ready to critically evaluate the results of computer simulations	E_K01	A discussion during classes

Course outline

course outline				
		Learning outcomes for	No.	
No.	Contents	the course	of	
			hours	
	LECTURE			
W1	Systems approach in designing object-oriented models of	EUW1, EUK1	2	
NA T	transport and logistics systems	EUWI, EUKI		
W2	Basic assumptions of the object-oriented paradigm:	EUW1, EUU1, EUU2	3	
VVZ	abstraction, encapsulation, polymorphism, inheritance	EUW1, EUU1, EUU2	5	
W3	Basics of creating classes in Python. Basics of the UML	EUW1, EUU1, , EUU2,	6	
VVS	language. Models of systems as classes	EUK1	O	
W4	Simulation experiments based on object-oriented models	EUW1, EUU1, , EUU2,	2	
VV4	of transport and logistics systems	EUK1	2	
١٨/٦	Development of computer simulation results in Python.	EUW1, EUU1, , EUU2,	2	
W5	Python specialized libraries	EUK1	2	

	COMPUTER LAB		
K1	Development of models of transport and logistics systems as cybernetic models	EUU1, EUU2, EUK1	2
K2	Designing object-oriented models of transport and logistics systems	EUU1, EUU2, EUK1	2
К3	Development of the simplest logistic chain model using Python	EUU1, EUU2, EUK1	2
K4	Development of a logistic chain model as a Python class	EUU1, EUU2, EUK1	2
K5	Development of a logistic chain model as a Python class	EUU1, EUU2, EUK1	2
К6	Creation of specialized classes for the automation of simulation experiments	EUU1, EUU2, EUK1	2
K7	Regression analysis of logistic chain simulation results	EUU1, EUU2, EUK1	3

The ECTS points statement

The Let's points statement			
WORKING HOURS SETTLEMENT			
Type of activity Average number of hours (45 m			
	dedicated to the completion of an activity		
	type		
SCHEDULED CONTACT HOURS WITH AN ACADEMIC TEACHER			
Hours allotted in the syllabus	30		
Consultations	1		
Examination / course credit assignment	2		
HOURS WITHOUT THE PARTICIPATION OF AN ACADEMIC TEACHER			
Independent study of the course contents 12			
Preparation of a final task	15		

ECTS POINTS STATEMENT			
Total number of hours 60			
The ECTS points number 2			

Preliminary requirements

	, ,
No.	Requirements
1	Knowledge of the basics of mathematical statistics
2	Knowledge of the basics of programming

Course credit assignment conditions / method of the final grade calculation

NI -	Description	
No.	Description	
	COURSE CREDIT ASSIGNMENT CONDITIONS	
1	80% attendance in class. Completion of a final task	
METHOD OF THE FINAL GRADE CALCULATION		
Assessment of the final task, taking into account the attendance		

Additional information

Not specified	
---------------	--

The course reading list

	Bruegge, B., Dutoit, A.H., <i>Inżynieria Oprogramowania w Ujęciu Obiektowym: UML, Wzorce</i>
1	Projektowe i JAVA, 2011, Helion
2	Grus, J., Data Science From Scratch: First Principles with Python, 2015, O'Reilly
3	Cellier, F.E., Continuous System Simulation, 2006, Springer Science
4	Banks, J., Discrete-event System Simulation, 2001, Prentice-Hall
5	Downey, A.B. <i>Think Python: How to Think Like a Computer Scientist</i> , 2015, O'Reilly
6	Lutz, M., <i>Python: Wprowadzenie</i> , 2011, Helion