Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Stateczność i dynamika konstrukcji
Name of the course in English	Stability and Dynamics of Structures
Number of the ECTS points	1
Language of instruction	Polish
Category of the course	Choosable
Field of education	Engineering and Technology
Discipline of education	Civil Engineering and Transport
Person responsible for the course Contact	Prof. Joanna Dulińska PhD Eng. joanna.dulinska@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical classes	Laboratory	Computer Lab	Project Class	Seminar
2, 3, 4, 5	G	15	0	0	0	0	0

*G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1 Expanding knowledge on contemporary issues of stability and dynamics of structur with particular emphasis on modelling the work of complex engineering structures	
Objective 2	Obtaining a broader view and perception of the role of stability and dynamics of a building in computer-aided design. Indication of the complementarity of theoretical analyses, finite elemental modelling and experimental research on the dynamics of buildings
Objective 3	Developing the ability to interpret and critically analyse the results of calculations in terms of the stability and dynamics of a building.

Learning Outcomes

	Description of the learning outcome adjusted to the	Learning	Methods of verification	
	specific characteristics of the discipline	outcome		
Code		symbol in		
		the CUT		
		SD		
	OUTCOMES RELATED TO KNOWLEDGE			
L				

EUW1	A PhD student knows and understands the methodology of solving the problems of stability and dynamics of structures with particular emphasis on complex engineering structures and complex dynamic loads		Involvement in class activities, a final test grade
EUW2	A PhD student understands the complementarity of theoretical analyses, finite element modelling and experimental research in the stability and dynamics of buildings	E_W01, E_W02	Involvement in class activities, a final test grade
	OUTCOMES RELATED TO SKI	LLS	
EUU1	A PhD student is able to choose the appropriate methods of solving the problems of stability and dynamics of structures, with particular emphasis on complex engineering structures		Involvement in class activities, a final test grade
EUK1	A PhD student is ready to interpret and critically evaluate the results of calculations in the field of stability and dynamics of structures and to analyse the results of research described in the subject literature	E_K01	Involvement in class activities, a final test grade
EUK2	A PhD student is ready to recognize the importance of knowledge in the field of stability and dynamics of structures in the implementation of the process of designing buildings.	E_K03	Involvement in class activities, a final test grade

Course outline

		Learning outcomes for	No.
No.	Contents	the course	of
			hours
	LECTURE		
	Study of contemporary research topics in the field of	EUW1,	
W1	building stability and dynamics. Computational tools and	EUW2,	2
***	methods in computer mechanics of structures.	EUU1,	2
		EUK1, EUK2	
	The role and complementarity of theoretical analyses,		
	finite-element modelling and experimental studies in the	EUW1,	
W2	stability and dynamics of buildings. Examples of the	EUW2,	3
VVZ	implementation of in situ research indicating the	EUU1,	5
	completion and verification of theoretical analyses in the	EUK1, EUK2	
	mechanics of structures.		
	Modelling of dynamic loads (including kinematic loads) in	EUW1,	
W3	the case of complex rod, surface and spatial (large-size)	EUW2,	2
VV 3	structures; examples of calculations of structures subjected	EUU1,	2
	to complex dynamic loads.	EUK1, EUK2	
	The role and complementarity of theoretical analyses,		
W4	finite-element modelling and experimental studies in the	EUW1,	
	stability and dynamics of buildings. Examples of the	EUW2,	3
	implementation of in situ research indicating the	EUU1,	5
	completion and verification of theoretical analyses in the	EUK1, EUK2	
	mechanics of structures.		

W5	Experience from failures and catastrophes caused by errors in the understanding of the stability and dynamics of structures: the role of correct static patterns, boundary conditions, load models, critical analysis of adopting substitute static patterns and technical solutions.	EUW1, EUW2, EUU1, EUK1, EUK2	3
W6	Proper interpretation and critical analysis of the results of calculations in the stability and dynamics of a structure. Examples of control and verification of calculation results of selected buildings. Principles for the preparation of studies and research reports in the field of building dynamics.	EUW1, EUW2, EUU1, EUK1, EUK2	2

The ECTS points statement

WORKING HOURS SETTLEMENT		
Average number of hours (45 min.)		
dedicated to the completion of an activity		
type		
I AN ACADEMIC TEACHER		
15		
2		
2		
HOURS WITHOUT THE PARTICIPATION OF AN ACADEMIC TEACHER		
Independent study of the course contents 11		
ECTS POINTS STATEMENT		
30		
1		

Preliminary requirements

No.	Requirements
1	Not specified

Course credit assignment conditions / method of the final grade calculation

No.	Description		
COURSE CREDIT ASSIGNMENT CONDITIONS			
1	75% attendance in class.		
2	A final test		
	METHOD OF THE FINAL GRADE CALCULATION		
Final test grade, taking into account the attendance			

Additional information

Not specified

	The course reading list
1	Chmielewski T., Zembaty Z., Podstawy dynamiki budowli, Warszawa, 1998, Arkady
2	Metoda Elementów skończonych w dynamice konstrukcji, praca zborowa, Warszawa, 1984, Arkady

The e مانية مرازمة

3	Dulinska J., Ziemne budowle hydrotechniczne na terenach sejsmicznych i parasejsmicznych w Polsce. Wybrane aspekty modelowania i obliczeń, Kraków, 2012, Wydawnictwo PK
4	Olszowski B., Radwańska M. <i>, Mechanika budowli,</i> t. 1–2, Kraków 2010, Wyd. Politechniki Krakowskiej.
5	Czasopisma: Engineering Structures, International Journal of Structural Stability and Dynamics, Inżynieria i Budownictwo; Archiwum Inżynierii Lądowej; Shock and Vibrations, Earthquake Engineering and Structural Dynamics,
6	Conference materials