Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Matematyka z elementami statystyki
Name of the course in English	Applied mathematics and statistics
Number of the ECTS points	2
Language of instruction	Polish
Category of the course	Mandatory
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power
	engineering
Person responsible for the course	Paweł S. Hachaj, doctor hab., MSc in Eng.
Contact	pawel.hachaj@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer Laboratory	Project class	Seminar
2	G	15	15	0	0	0	0

^{*}G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Introduction to applied mathematics as a tool and language of natural and technical
	sciences.
Objective 2	Gaining knowledge of the basics of selected branches of applied mathematics, in particular elements of the probability theory and statistics.

Learning Outcomes

Code	Description of the learning outcome adjusted to the specific characteristics of the discipline	Learning outcome	Methods of verification
		symbol in	
		the CUT SD	
	OUTCOMES RELATED TO KNOWLEDG	E	
EUW1	The doctoral student understands the approach to		Involvement in
	applied mathematics as the language of natural and	E_W01	class activities
	technical sciences; knows the possibilities and	E_W02	
	limitations of the scientific method	E_W05	
EUW2	The doctoral student knows the basics of selected		Involvement in
	areas of applied mathematics, in particular: graph	E_W01	class activities
	theory, optimization, harmonic analysis, solving		
	differential equations		
EUW3	The doctoral student knows the basics of probability	E_W01	Involvement in
	theory and statistics		class activities
	OUTCOMES RELATED TO SKILLS		

	The doctoral student is able to apply their		Involvement in
EUU1	knowledge of applied mathematics to real	E_U01	class activities
	engineering problems, in particular regarding the		
	subject of their doctoral dissertation		
	OUTCOMES RELATED TO SOCIAL COMPETE	ENCES	
EUK1	The doctoral student understands the difference		Discussion
	between formal and everyday reasoning; in	E_K01	
	practical situations, is able to make transitions	E_K03	
	between them for the benefit of interlocutors	E_K05	
	(formalization and popularization)		

Course outline

No.	Contents	Learning	No. of
		outcomes for the hours	
		course	
	LECTURE/ PRACTICAL CLASS		
W1	Mathematics as the language of science	EUW1, EUU1,	3L 2PC
		EUK1	
W2	Fundamentals of graph theory	EUW2, EUU1,	3L 3PC
		EUK1	
W3	Outline of the theory of probability and statistics	EUW3, EUU2	3L 3PC
		EUK1	
W4	Ranking and optimization	EUW1, EUU1,	2L 3PC
		EUK1	
W5	Harmonic analysis	EUW1, EUU1,	2L 2PC
		EUK1	
W6	Fundamentals of the application of differential equations in	EUW1, EUU1,	2L 2PC
	engineering problems	EUK1	

The ECTS points statement

•		
WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to	
	the completion of an activity type	
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER	
Hours allotted in the syllabus	30	
Consultations	2	
Examination / course credit assignment	1	
HOURS WITHOUT THE PARTICIPATION OF THE ACADEMIC TEACHER		
Independent study of the course contents	15	
Preparation of a paper, report, project,	12	
presentation, discussion		
ECTS POINTS STATEMENT		
Total number of hours	60	
The ECTS points number	2	

Preliminary requirements

No.	Requirements	
1	Knowledge of applied mathematics adequate for a graduate of science and / or technical	1
	studies	

Course credit assignment conditions / method of the final grade calculation

No.	Description	
	COURSE CREDIT ASSIGNMENT CONDITIONS	
1	Minimum 75% attendance in class.	
2	Involvement in class activities	
	METHOD OF THE FINAL GRADE CALCULATION	
	Credit assigned on the grounds of attendance in class and involvement in class activities	

Additional information

Assumption of the course: currently existing programs of applied mathematics seem to attach too much importance to detailed methods of mathematical analysis and linear algebra, which in the age of computerization are becoming less and less useful for practitioners, and whose descriptions are readily available if necessary. Instead of the above, the proposed course syllabus focuses on the issues at the interface: {physical problem \rightarrow mathematical model} and {calculation result \rightarrow practical conclusion}.

The course reading list

1	J. Robertson, S. Robertson: "Full System Analysis"
2	R. Penrose: "The Emperor's New Mind"
3	J. Churgin: "And what next?"
4	E.M. Goldratt "Objective II: It's not a coincidence"
5	N.N. Taleb: "Seduced by Randomness"
6	W. Kurt: "Bayesian statistics - the fun way"
7	D. Sumpter: "Outnumbered"