Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Energetyka Konwencjonalna
Name of the course in English	Conventional Heat and Power Generation
Number of the ECTS points	1
Language of instruction	Polish
Category of the course	Elective
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power
	engineering
Person responsible for the course	Prof. Jan Taler, doctor hab., MSc in Eng.
Contact	jtaler@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type	Lecture	Practical	Laboratory	Computer	Project	Seminar
	(G / NG)*		class		Laboratory	class	
2, 3, 4, 5,	G	15	0	0	0	0	0
6							

^{*}G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Introduction to Poland's energy resources and the organization of the energy system
	in Poland.
Objective 2	Introduction to the conservation equations of mass, momentum and energy, and their application in the calculations of water and steam boilers, steam, gas and water turbines, pumps, electric, storage and flow heaters, heat exchangers and reduction valves.
Objective 3	Introduction to design and calculations of power plants and combined heat and power plants.

Learning Outcomes

Code	Description of the learning outcome adjusted to the	Learning	Methods of
	specific characteristics of the discipline	outcome	verification
		symbol in	
		the CUT SD	
	OUTCOMES RELATED TO KNOWLEDG	E	
EUW1	The doctoral student knows the methods of		
	modelling thermodynamic processes in energy	E_W01	Involvement in
	systems and installations	E_W02	class activities,
			presentations
EUW2	The doctoral student has the knowledge of		Involvement in
	generation of mechanical, electrical and thermal	E_W01	class activities,
			presentation

		1	1
	energy; knows the basic energy technologies and		
	devices		
	OUTCOMES RELATED TO SKILLS		
EUU1	The doctoral student is able to apply the mass, momentum and energy conservation equations to describe the processes that are related to the implementation of the doctoral dissertation	E_U01	Discussion, graded presentation and a written test
EUU2	The doctoral student is able to indicate the influence of the applied model on the obtained results of modelling issues related to the implementation of the doctoral dissertation.	E_U01	Discussion
OUTCOMES RELATED TO SOCIAL COMPETENCES			
EUK1	The doctoral student is able to refer to the methods of analysing the issues of modelling energy systems known in the literature, which are related to the implementation of the doctoral dissertation, and to justify the models they use or the lack of the need to use them.	E_K03 E_K01	Discussion

Course outline

No.	Contents	Learning	No. of
		outcomes for the	hours
		course	
	LECTURE		
W1	Types of power plants and classification. Distributed and	EUW1, EUW2	
	prosumer energy.	EUU1	1
W2	The laws of conservation of the mass of momentum and	EUW1, EUU1	
	energy. Examples of the use of conservation equations.		2
W3	Thermal cycles of condensing power plants and combined	EUW1, EUU1	1
	heat and power plants. Steam power plant efficiency and		
	ways of improving it.		
W4	Improving the Rankine cycle efficiency through interstage	EUW2, EUU2,	1
	steam superheating.	EUU1, EUK1	
W5	Improving the Rankine cycle efficiency through interstage	EUW1, EUW2,	2
	steam superheating.	EUU2, EUK1	
W6	Improving the Rankine cycle efficiency by regenerative	EUW1, EUW2,	2
	heating of the feed water (carnotization of the Rankine	EUU2, EUK1	
	cycle)		
W7	Thermal systems of power plants and steam heat and power	EUW1, EUW2,	1
	plants with sub- and supercritical pressure. Boilers, turbines	EUU2, EUK1	
	and auxiliary power plant equipment.		
W8	Nuclear power plants with pressurized and boiling reactors.	EUW1, EUW2,	1
	Thermal systems. Comparison of the Rankine cycle in a	EUU2, EUK1	
	classical and nuclear power plant		
W9	Power plants with gas turbines and steam and gas power	EUW1, EUU1	2
	plants.		
W10	Power plants with internal combustion engines.	EUW1, EUU1	1

W11	Improving the flexibility of heat blocks.	EUW1, EUU1,	1
		EUK1	

The ECTS points statement

WORKING HOURS SETTLEMENT		
Type of activity	Average number of hours (45 min.) dedicated to	
	the completion of an activity type	
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER	
Hours allotted in the syllabus	15	
Consultations	1	
Examination / course credit assignment	2	
HOURS WITHOUT THE PARTICIPA	TION OF THE ACADEMIC TEACHER	
Independent study of the course contents	8	
Preparation of a paper, report, project,	4	
presentation, discussion		
ECTS POINTS STATEMENT		
Total number of hours	30	
The ECTS points number	1	

Preliminary requirements

	No.	Requirements
	1	Knowledge of technical thermodynamics, fluid mechanics and heat transfer.
Ī	2	knowledge of the English language

Course credit assignment conditions / method of the final grade calculation

No.	Description			
	COURSE CREDIT ASSIGNMENT CONDITIONS			
1	80% attendance in class.			
2	Delivery of a paper.			
	METHOD OF THE FINAL GRADE CALCULATION			
	Credit assigned on the grounds of weighted average of the result of the written test and the			
	delivery of the paper.			

Additional information

None

The course reading list

1	Pawlik M., Strzelczyk F., Power plants. Fifth revised edition, WNT Warszawa 2009.
2	Sarkar D. K., Thermal Power Plant. Design and Operation, Elsevier, Amsterdam 2015
3	Spliethoff H., Power Generation from Solid Fuels. Springer, Heidelberg-Dordrecht 2010.
4	Ehrlich R., Geller H.A., Reneweble Energy. Second Edition, CRC Press, Boca Raton 2018.