Cracow University of Technology

Course syllabus

binding for the doctoral students of the CUT Doctoral School commencing their studies in the academic year 2022/2023

Information on the course

Name of the course in Polish	Magazynowanie energii
Name of the course in English	Energy storage
Number of the ECTS points	1
Language of instruction	Polish
Category of the course	Elective
Field of education	Engineering and Technology
Discipline of education	Environmental engineering, ,mining and power
	engineering
Person responsible for the course	Prof Paweł Ocłoń, doctor hab., MSc in Eng.
Contact	pawel.oclon@pk.edu.pl

Type of course, number of hours in the study programme curriculum

Semester	Credit type (G / NG)*	Lecture	Practical class	Laboratory	Computer Laboratory	Project class	Seminar
3	G	15	0	0	0	0	0

*G – graded credit, NG – non-graded credit

Course objectives

Code	Objective description
Objective 1	Introduction to the methods of electrical energy storage
Objective 2	Introduction to the methods of thermal energy storage

Learning Outcomes

	6		
Code	Description of the learning outcome adjusted to the	Learning	Methods of
	specific characteristics of the discipline	outcome	verification
		symbol in	
		the CUT SD	
	OUTCOMES RELATED TO KNOWLEDG	E	
EUW1	The doctoral student has the knowledge electrical	E_W01	
	and thermal energy storage techniques	E_W02	
OUTCOMES RELATED TO SKILLS			
	The doctoral student is able to design an electrical	E_U01	
EUU1	energy storage system		
EUU2	The doctoral student is able to design a thermal		
	energy storage system	E_U02	
OUTCOMES RELATED TO SOCIAL COMPETENCES			
EUK1	The doctoral student is able to work in a team to		Discussion
	solve engineering problems	E_K01	

Course outline

No.	Contents	Learning	No. of
		outcomes for the	hours
		course	
	LECTURE		
W1	Overview of the issues of integration of renewable energy	EUW1, EUW2,	
	sources with conventional systems. Discussion of Poland's	EUU1	5
	energy problems in the context of increasing the share of		
	renewable energy sources in the national energy system		
W2	Overview of electricity storage methods (hydrogen	EUW1, EUW2	
	technologies, gas-liquid systems, compressed air energy		5
	storage).		
W3	Overview of thermal energy storage methods (phase-change	EUW1, EUU2,	5
	materials, accumulation tanks, underground storage of	EUK1,	
	thermal energy)		

The ECTS points statement

WORKING HOURS SETTLEMENT			
Type of activity	Average number of hours (45 min.) dedicated to		
	the completion of an activity type		
SCHEDULED CONTACT HOURS	WITH THE ACADEMIC TEACHER		
Hours allotted in the syllabus	15		
Consultations	1		
Examination / course credit assignment	2		
HOURS WITHOUT THE PARTICIPATION OF THE ACADEMIC TEACHER			
Independent study of the course contents	8		
Preparation of a paper, report, project,	4		
presentation, discussion			
ECTS POINTS STATEMENT			
Total number of hours	30		
The ECTS points number	1		

Preliminary requirements

No.	Requirements
1	Basic knowledge of heat transfer and thermodynamics

Course credit assignment conditions / method of the final grade calculation

No.	Description
	COURSE CREDIT ASSIGNMENT CONDITIONS
1	Project on numerical calculations of temperature distribution in an underground energy
	store system
	METHOD OF THE FINAL GRADE CALCULATION
	Credit assigned on the grounds of the results of the project on numerical calculations of
	temperature distribution in an underground energy store system

Additional information

None

The course reading list

	Paweł Ocłoń, Renewable Energy Utilization Using Underground Energy Systems Lecture
	Notes in Energy, Vol. 84, Springer International Publishing, 2021, Cham, Switzerland